Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Infect Public Health ; 16(9): 1379-1385, 2023 Jun 02.
Article in English | MEDLINE | ID: covidwho-20231276

ABSTRACT

BACKGROUND: During the early SARS-CoV-2 pandemic, all healthcare workers had specific and essential functions. However, environmental services (e.g., cleaning staff) and allied health professionals (e.g., physiotherapists) are often less recognised inpatient care. The aim of our study was to evaluate SARS-CoV-2-infection rates and describe risk factors relevant to workplace transmission and occupational safety amongst healthcare workers in COVID-19 hospitals before the introduction of SARS-CoV-2-specific vaccines. METHODS: This cross-sectional study (from May 2020 to March 2021, standardised WHO early-investigation protocol) is evaluating workplace or health-related data, COVID-19-patient proximity, personal protective equipment (PPE) use, and adherence to infection prevention and control (IPC) measures, anti-SARS-CoV-2-antibody status, and transmission pathways. RESULTS: Out of n = 221 HCW (n = 189 cleaning/service staff; n = 32 allied health professionals), n = 17 (7.7 %) were seropositive. While even SARS-CoV-2-naïve HCW reported SARS-CoV-2-related symptoms, airway symptoms, loss of smell or taste, and appetite were the most specific for a SARS-CoV-2-infection. Adherence to IPC (98.6 %) and recommended PPE use (98.2 %) were high and not associated with seropositivity. In 70.6 %, transmission occurred in private settings; in 23.5 %, at the workplace (by interaction with SARS-CoV-2-positive colleagues [17.6 %] or patient contact [5.9 %]), or remained unclear (one case). CONCLUSIONS: Infection rates were higher in all assessed 'less visible' healthcare-worker groups compared to the general population. Our data indicates that, while IPC measures and PPE may have contributed to the prevention of patient-to-healthcare-worker transmissions, infections were commonly acquired outside of work and transmitted between healthcare workers within the hospital. This finding emphasises the importance of ongoing education on transmission prevention and regular infection screenings at work.

2.
J Infect Public Health ; 16(3): 384-392, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2180687

ABSTRACT

Age represents the major risk factor for fatal disease outcome in coronavirus disease (COVID-19) due to age-related changes in immune responses. On the one hand lymphocyte counts continuously decline with advancing age, on the other hand somatic hyper-mutations of B-lymphocytes and levels of class-switched antibodies diminish, resulting in lower neutralizing antibody titers. To date the impact of age on immunoglobulin G (IgG) production in response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is unknown. Therefore, we investigated the impact of age on the onset of IgG production and its association with outcome, viral persistence, inflammatory and thrombotic markers in consecutive, hospitalized COVID-19 patients admitted to the Clinic Favoriten (Vienna, Austria) between April and October 2020 that fulfilled predefined inclusion criteria. Three different IgGs against SARS-CoV-2 (spike protein S1, nucleocapsid (NC), and the spike protein receptor binding domain (RBD)) were monitored in plasma of 97 patients upon admission and three times within the first week followed by weekly assessment during their entire hospital stay. We analyzed the association of clinical parameters including C-reactive protein (CRP), D-dimer levels and platelet count as well as viral persistence with the onset and concentration of different anti-SARS-CoV-2 specific IgGs. Our data demonstrate that in older individuals anti-SARS-CoV-2 IgG production increases earlier after symptom onset and that deceased patients have the highest amount of antibodies against SARS-CoV-2 whereas intensive care unit (ICU) survivors have the lowest titers. In addition, anti-SARS-CoV-2 IgG concentrations are not associated with curtailed viral infectivity, inflammatory or thrombotic markers, suggesting that not only serological memory but also other adaptive immune responses are involved in successful viral killing and protection against a severe COVID-19 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Aged , Immunoglobulin G , Spike Glycoprotein, Coronavirus , Inflammation , Antibodies, Viral
3.
J Med Virol ; 95(1): e28404, 2023 01.
Article in English | MEDLINE | ID: covidwho-2157853

ABSTRACT

The severity of COVID-19 is associated with individual genetic host factors. Among these, genetic polymorphisms affecting natural killer (NK) cell responses, as variations in the HLA-E- (HLA-E*0101/0103), FcγRIIIa- (FcγRIIIa-158-F/V), and NKG2C- (KLRC2wt/del ) receptor, were associated with severe COVID-19. Recently, the rs9916629-C/T genetic polymorphism was identified that indirectly shape the human NK cell repertoire towards highly pro-inflammatory CD56bright NK cells. We investigated whether the rs9916629-C/T variants alone and in comparison to the other risk factors are associated with a fatal course of COVID-19. We included 1042 hospitalized surviving and 159 nonsurviving COVID-19 patients as well as 1000 healthy controls. rs9916629-C/T variants were genotyped by TaqMan assays and were compared between the groups. The patients' age, comorbidities, HLA-E*0101/0103, FcγRIIIa-158-F/V, and KLRC2wt/del variants were also determined. The presence of the rs9916629-C allele was a risk factor for severe and fatal COVID-19 (p < 0.0001), independent of the patients' age or comorbidities. Fatal COVID-19 was more frequent in younger patients (<69.85 years) carrying the FcγRIIIa-158-V/V (p < 0.006) and in older patients expressing the KLRC2del variant (p < 0.003). Thus, patients with the rs9916629-C allele have a significantly increased risk for fatal COVID-19 and identification of the genetic variants may be used as prognostic marker for hospitalized COVID-19 patients.


Subject(s)
COVID-19 , Killer Cells, Natural , Polymorphism, Genetic , Aged , Humans , Alleles , COVID-19/genetics , NK Cell Lectin-Like Receptor Subfamily C/genetics , Risk Factors
4.
Sci Rep ; 12(1): 20117, 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2133630

ABSTRACT

SARS-CoV-2 gains cell entry via angiotensin-converting enzyme (ACE) 2, a membrane-bound enzyme of the "alternative" (alt) renin-angiotensin system (RAS). ACE2 counteracts angiotensin II by converting it to potentially protective angiotensin 1-7. Using mass spectrometry, we assessed key metabolites of the classical RAS (angiotensins I-II) and alt-RAS (angiotensins 1-7 and 1-5) pathways as well as ACE and ACE2 concentrations in 159 patients hospitalized with COVID-19, stratified by disease severity (severe, n = 76; non-severe: n = 83). Plasma renin activity (PRA-S) was calculated as the sum of RAS metabolites. We estimated ACE activity using the angiotensin II:I ratio (ACE-S) and estimated systemic alt-RAS activation using the ratio of alt-RAS axis metabolites to PRA-S (ALT-S). We applied mixed linear models to assess how PRA-S and ACE/ACE2 concentrations affected ALT-S, ACE-S, and angiotensins II and 1-7. Median angiotensin I and II levels were higher with severe versus non-severe COVID-19 (angiotensin I: 86 versus 30 pmol/L, p < 0.01; angiotensin II: 114 versus 58 pmol/L, p < 0.05), demonstrating activation of classical RAS. The difference disappeared with analysis limited to patients not taking a RAS inhibitor (angiotensin I: 40 versus 31 pmol/L, p = 0.251; angiotensin II: 76 versus 99 pmol/L, p = 0.833). ALT-S in severe COVID-19 increased with time (days 1-6: 0.12; days 11-16: 0.22) and correlated with ACE2 concentration (r = 0.831). ACE-S was lower in severe versus non-severe COVID-19 (1.6 versus 2.6; p < 0.001), but ACE concentrations were similar between groups and correlated weakly with ACE-S (r = 0.232). ACE2 and ACE-S trajectories in severe COVID-19, however, did not differ between survivors and non-survivors. Overall RAS alteration in severe COVID-19 resembled severity of disease-matched patients with influenza. In mixed linear models, renin activity most strongly predicted angiotensin II and 1-7 levels. ACE2 also predicted angiotensin 1-7 levels and ALT-S. No single factor or the combined model, however, could fully explain ACE-S. ACE2 and ACE-S trajectories in severe COVID-19 did not differ between survivors and non-survivors. In conclusion, angiotensin II was elevated in severe COVID-19 but was markedly influenced by RAS inhibitors and driven by overall RAS activation. ACE-S was significantly lower with severe COVID-19 and did not correlate with ACE concentrations. A shift to the alt-RAS axis because of increased ACE2 could partially explain the relative reduction in angiotensin II levels.


Subject(s)
COVID-19 , Peptide Hormones , Humans , Angiotensin-Converting Enzyme 2 , Renin-Angiotensin System , Angiotensin I , Angiotensin II , SARS-CoV-2 , Renin , Antihypertensive Agents
5.
Front Immunol ; 13: 946318, 2022.
Article in English | MEDLINE | ID: covidwho-2141971

ABSTRACT

Background and Methods: The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) Omicron (B.1.1.529) variant is the antigenically most distinct variant to date. As the heavily mutated spike protein enables neutralization escape, we studied serum-neutralizing activities of naïve and vaccinated individuals after Omicron BA.1 or BA.2 sub-lineage infections in live virus neutralization tests with Omicron BA.1, Omicron BA.2, wildtype (WT, B1.1), and Delta (B.1.617.2) strains. Serum samples obtained after WT infections and three-dose mRNA vaccinations with and without prior infection were included as controls. Results: Primary BA.1 infections yielded reduced neutralizing antibody levels against WT, Delta, and Omicron BA.2, while samples from BA.2-infected individuals showed almost no cross-neutralization against the other variants. Serum neutralization of Omicron BA.1 and BA.2 variants was detectable after three-dose mRNA vaccinations, but with reduced titers. Vaccination-breakthrough infections with either Omicron BA.1 or BA.2, however, generated equal cross-neutralizing antibody levels against all SARS-CoV-2 variants tested. Conclusions: Our study demonstrates that although Omicron variants are able to enhance cross-neutralizing antibody levels in pre-immune individuals, primary infections with BA.1 or BA.2 induced mostly variant-specific neutralizing antibodies, emphasizing the differently shaped humoral immunity induced by the two Omicron variants. These data thus contribute substantially to the understanding of antibody responses induced by primary Omicron infections or multiple exposures to different SARS-CoV-2 variants and are of particular importance for developing vaccination strategies in the light of future emerging variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , Humans , Membrane Glycoproteins , Neutralization Tests , RNA, Messenger , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins
6.
Wien Klin Wochenschr ; 2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2085388

ABSTRACT

BACKGROUND: Remdesivir is the only antiviral agent approved for the treatment of hospitalized coronavirus disease 2019 (COVID-19) patients requiring supplemental oxygen. Studies show conflicting results regarding its effect on mortality. METHODS: In this single center observational study, we included adult hospitalized COVID-19 patients. Patients who were treated with remdesivir were compared to controls. Remdesivir was administered for 5 days. To adjust for any imbalances in our cohort, a propensity score matched analysis was performed. The aim of our study was to analyze the effect of remdesivir on in-hospital mortality and length of stay (LOS). RESULTS: After propensity score matching, 350 patients (175 remdesivir, 175 controls) were included in our analysis. Overall, in-hospital mortality was not significantly different between groups remdesivir 5.7% [10/175] vs. control 8.6% [15/175], hazard ratio 0.50, 95% confidence interval (CI) 0.22-1.12, p = 0.091. Subgroup analysis showed a significant reduction of in-hospital mortality in patients who were treated with remdesivir ≤ 7 days of symptom onset remdesivir 4.2% [5/121] vs. control 10.4% [13/125], hazard ratio 0.26, 95% CI 0.09 to 0.75, p = 0.012 and in female patients remdesivir 2.9% [2/69] vs. control 12.2% [9/74], hazard ratio 0.18 95%CI 0.04 to 0.85, p = 0.03. Patients in the remdesivir group had a significantly longer LOS (11 days vs. 9 days, p = 0.046). CONCLUSION: Remdesivir did not reduce in-hospital mortality in our whole propensity score matched cohort, but subgroup analysis showed a significant mortality reduction in female patients and in patients treated within ≤ 7 days of symptom onset. Remdesivir may reduce mortality in patients who are treated in the early stages of illness.

7.
BMJ Open ; 12(10): e062176, 2022 10 11.
Article in English | MEDLINE | ID: covidwho-2064155

ABSTRACT

OBJECTIVES: As part of a randomised controlled trial, this qualitative study aimed to identify experiences and challenges of hospitalised patients with COVID-19 during illness and treatment (objective 1: COVID-19-related perspectives; objective 2: trial participation-related perspectives). DESIGN: Semistructured interviews following a prespecified interview guide, transcribed verbatim and analysed in accordance with the grounded theory process. Investigator triangulation served to ensure rigour of the analysis. SETTING: Interviews were embedded in a multicentre, randomised, active-controlled, open-label platform trial testing efficacy and safety of experimental therapeutics for patients with COVID-19 (Austrian Corona Virus Adaptive Clinical Trial). PARTICIPANTS: 20 patients (60±15 years) providing 21 interviews from 8 June 2020 to 25 April 2021. RESULTS: Qualitative data analysis revealed four central themes with subthemes. Theme 1, 'A Severe Disease', related to objective 1, was characterised by subthemes 'symptom burden', 'unpredictability of the disease course', 'fear of death' and 'long-term aftermaths with lifestyle consequences'. Theme 2, 'Saved and Burdened by Hospitalization', related to objective 1, comprised patients describing their in-hospital experience as 'safe haven' versus 'place of fear', highlighting the influence of 'isolation'. Theme 3, 'Managing One's Own Health', related to objective 1, showed how patients relied on 'self-management' and 'coping' strategies. Theme 4, 'Belief in Medical Research', related to objective 2, captured patients' 'motivation for study participation', many expressing 'information gaps' and 'situational helplessness' in response to study inclusion, while fewer mentioned 'therapy side-effects' and provided 'study reflection'. Investigator triangulation with an expert focus group of three doctors who worked at the study centre confirmed the plausibility of these results. CONCLUSIONS: Several of the identified themes (2, 3, 4) are modifiable and open for interventions to improve care of patients with COVID-19. Patient-specific communication and information is of utmost importance during clinical trial participation, and was criticised by participants of the present study. Disease self-management should be actively encouraged. TRIAL REGISTRATION NUMBER: NCT04351724.


Subject(s)
COVID-19 , Hospitalization , Hospitals , Humans , Qualitative Research , SARS-CoV-2
8.
Infection ; 2022 Sep 09.
Article in English | MEDLINE | ID: covidwho-2014588

ABSTRACT

BACKGROUND: Tocilizumab and baricitinib are recommended treatment options for hospitalized COVID-19 patients requiring oxygen support. Literature about its efficacy and safety in a head-to-head comparison is scarce. METHODS: Hospitalized COVID-19 patients requiring oxygen were treated with tocilizumab or baricitinib additionally to dexamethasone. Tocilizumab was available from February till the 19th of September 2021 and baricitinib from 21st of September. The primary outcome was in-hospital mortality. Secondary outcome parameters were progression to mechanical ventilation (MV), length-of-stay (LOS) and potential side effects. RESULTS: 159 patients (tocilizumab 68, baricitinib 91) with a mean age of 60.5 years, 64% male were included in the study. Tocilizumab patients were admitted 1 day earlier, were in a higher WHO category at the time of inclusion and had a higher CRP level on admission and treatment initiation. Patients receiving Tocilizumab were treated with remdesivir more often and only patients in the baricitinib group were treated with monoclonal antibodies. Other characteristics did not differ significantly. In-hospital mortality (18% vs. 11%, p = 0.229), progression to MV (19% vs. 11%, p = 0.173) and LOS (13 vs. 12 days, p = 0.114) did not differ between groups. Side effects were equally distributed between groups, except ALAT elevation which was significantly more often observed in the tocilizumab group (43% vs. 25%, p = 0.021). CONCLUSIONS: In-hospital mortality, progression to MV and LOS were not significantly different in patients treated with tocilizumab or baricitinib additionally to standard of care. Both drugs seem equally effective but further head-to-head trials are needed.

9.
Wien Klin Wochenschr ; 2022 Sep 07.
Article in English | MEDLINE | ID: covidwho-2007148

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has undergone different molecular changes, sprouting genetic variants of the original wildtype. Clinical comparisons between patients infected with alpha versus delta are scarce. METHODS: In this retrospective observational study, adult patients hospitalized with coronavirus disease 2019 (COVID-19) due to confirmed SARS-CoV­2 alpha or delta infection were included. Patient characteristics, virologic and laboratory parameters, as well as the clinical course were compared in patients infected with alpha vs. delta variants. RESULTS: A total of 106 patients infected with alpha and 215 patients infected with delta were included. Patients infected with the delta variant were admitted to hospital earlier after symptom onset (6 vs. 7 days, p < 0.001). Blood levels of C­reactive protein (43.3 vs. 62.9 mg/l, p = 0.02) and neutrophil count (3.81 vs. 4.53 G/l, p = 0.06) were lower in delta patients. Furthermore, at hospital admission cycle threshold (CT) values were significantly lower in patients infected with the delta variant (22.3 vs. 24.9, p < 0.001). Patients infected with the delta variant needed supplemental oxygen less often during disease course (50% vs. 64%, p = 0.02). Furthermore, there was a statistically non-significant trend towards a lower ICU admission rate among delta patients (16% vs. 24%, p = 0.08) CONCLUSION: Patients diagnosed with the delta variant were admitted to the hospital earlier, had a less severe course of disease and a higher viral replication on admission. This may provide a window of opportunity for antivirals in the hospital setting.

10.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1970687

ABSTRACT

Background and Methods The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) Omicron (B.1.1.529) variant is the antigenically most distinct variant to date. As the heavily mutated spike protein enables neutralization escape, we studied serum-neutralizing activities of naïve and vaccinated individuals after Omicron BA.1 or BA.2 sub-lineage infections in live virus neutralization tests with Omicron BA.1, Omicron BA.2, wildtype (WT, B1.1), and Delta (B.1.617.2) strains. Serum samples obtained after WT infections and three-dose mRNA vaccinations with and without prior infection were included as controls. Results Primary BA.1 infections yielded reduced neutralizing antibody levels against WT, Delta, and Omicron BA.2, while samples from BA.2-infected individuals showed almost no cross-neutralization against the other variants. Serum neutralization of Omicron BA.1 and BA.2 variants was detectable after three-dose mRNA vaccinations, but with reduced titers. Vaccination-breakthrough infections with either Omicron BA.1 or BA.2, however, generated equal cross-neutralizing antibody levels against all SARS-CoV-2 variants tested. Conclusions Our study demonstrates that although Omicron variants are able to enhance cross-neutralizing antibody levels in pre-immune individuals, primary infections with BA.1 or BA.2 induced mostly variant-specific neutralizing antibodies, emphasizing the differently shaped humoral immunity induced by the two Omicron variants. These data thus contribute substantially to the understanding of antibody responses induced by primary Omicron infections or multiple exposures to different SARS-CoV-2 variants and are of particular importance for developing vaccination strategies in the light of future emerging variants.

11.
Front Immunol ; 13: 888794, 2022.
Article in English | MEDLINE | ID: covidwho-1896684

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) with different resistance levels to existing immunity have recently emerged. Antibodies that recognize the SARS-CoV-2 spike (S) protein and exhibit neutralizing activities are considered the best correlate of protection and an understanding of humoral immunity is crucial for controlling the pandemic. We thus analyzed such antibodies in individuals recovered from infection in 2020 as well as vaccinees after two doses of an mRNA vaccine. Methods: Neutralizing antibody responses against three SARS-CoV-2 variants (D614G, VOCs Beta and Delta) were determined in serum samples from 54 infected individuals (24 non-hospitalized, 30 hospitalized) and 34 vaccinees shortly after symptom onset or second vaccination, respectively, as well as six months later. In addition, the effect of the S sequence of the infecting strain on neutralization was studied. Results: Non-hospitalized patients had the lowest neutralization titers against all variants, while those of hospitalized patients equaled or exceeded those of vaccinees. Neutralizing activity was lower against the two VOCs and declined significantly in all cohorts after six months. This decrease was more pronounced in hospitalized and vaccinated individuals than in non-hospitalized patients. Of note, the specific neutralizing activity (NT titer/ELISA value ratio) was higher in the infected cohorts than in vaccinees and did not differ between non-hospitalized and hospitalized patients. Patients infected with viral strains carrying mutations in the N-terminal domain of the spike protein were impaired in Beta VOC neutralization. Conclusions: Specific neutralizing activities were higher in infected than in vaccinated individuals, and no difference in the quality of these antibodies was observed between hospitalized and non-hospitalized patients, despite significantly lower titers in the latter group. Additionally, antibody responses of infected individuals showed greater heterogeneity than those of vaccinees, which was associated with mutations in the spike protein of the infecting strain. Overall, our findings yielded novel insights into SARS-CoV-2-specific neutralizing antibodies, evolving differently after virus infection and COVID-19 vaccination, which is an important issue to consider in ongoing vaccine strategy improvements.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Membrane Glycoproteins , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccines, Synthetic , Viral Envelope Proteins , mRNA Vaccines
12.
Microbiol Spectr ; 10(3): e0014022, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1891745

ABSTRACT

A high rate of bacterial and fungal superinfections was reported in critically ill patients with COVID-19. However, diagnosis can be challenging. The aim of this study is to evaluate the sensitivity and the clinical utility of the point-of-care method T2 magnetic resonance (T2MR) with the gold standard: the blood culture. T2MR can potentially detect five different Candida species and six common bacteria (so-called "ESKAPE" pathogens including Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Acinet`obacter baumanii, Pseudomonas aeruginosa, and Enterococcus faecium). If superinfection was suspected in patients with COVID-19 admitted to the intensive care unit, blood culture and two panels of T2MR were performed. Eighty-five diagnostic bundles were performed in 60 patients in total. T2MR detected an ESKAPE pathogen in 9 out of 85 (10.6%) samples, compared to BC in 3 out of 85 (3.5%). A Candida species was detected in 7 of 85 (8.2%) samples of T2MR compared to 1 out of 85(1.2%) in blood culture. The mean time to positive test result in samples with concordant positive results was 4.5 h with T2MR and 52.5 h with blood culture. The additional use of T2MR enables a highly sensitive and rapid detection of ESKAPE and Candida pathogens. IMPORTANCE Coronavirus disease 2019 (COVID-19) has led to a high number of deaths since the beginning of the pandemic worldwide. One of the reasons is the high number of bacterial and fungal superinfections in patients suffering from critical disease. However, diagnosis is often challenging. In this study we could show that the additional use of the culture-independent method T2MR did not only show a much higher detection rate of bacterial and fungal pathogens but also a significantly shorter time until detection and therapy change compared to the gold standard: the blood culture. The implementation of T2MRin the care of patients with severe course of COVID-19 might lead to an earlier sufficient antimicrobial therapy and as a result lower mortality and less use of broad-spectrum unnecessary therapy reducing the risk of resistance development.


Subject(s)
COVID-19 , Candidemia , Enterococcus faecium , Superinfection , Anti-Bacterial Agents/therapeutic use , Blood Culture , COVID-19/diagnosis , Candida , Candidemia/diagnosis , Candidemia/drug therapy , Candidemia/microbiology , Escherichia coli , Humans , Magnetic Resonance Spectroscopy/methods , Superinfection/drug therapy
13.
Front Cardiovasc Med ; 8: 779073, 2021.
Article in English | MEDLINE | ID: covidwho-1809356

ABSTRACT

Background: The fatal consequences of an infection with severe acute respiratory syndrome coronavirus 2 are not only caused by severe pneumonia, but also by thrombosis. Platelets are important regulators of thrombosis, but their involvement in the pathogenesis of COVID-19 is largely unknown. The aim of this study was to determine their functional and biochemical profile in patients with COVID-19 in dependence of mortality within 5-days after hospitalization. Methods: The COVID-19-related platelet phenotype was examined by analyzing their basal activation state via integrin αIIbß3 activation using flow cytometry and the proteome by unbiased two-dimensional differential in-gel fluorescence electrophoresis. In total we monitored 98 surviving and 12 non-surviving COVID-19 patients over 5 days of hospital stay and compared them to healthy controls (n = 12). Results: Over the observation period the level of basal αIIbß3 activation on platelets from non-surviving COVID-19 patients decreased compared to survivors. In line with this finding, proteomic analysis revealed a decrease in the total amount of integrin αIIb (ITGA2B), a subunit of αIIbß3, in COVID-19 patients compared to healthy controls; the decline was even more pronounced for the non-survivors. Consumption of the fibrin-stabilizing factor coagulation factor XIIIA (F13A1) was higher in platelets from COVID-19 patients and tended to be higher in non-survivors; plasma concentrations of the latter also differed significantly. Depending on COVID-19 disease status and mortality, increased amounts of annexin A5 (ANXA5), eukaryotic initiation factor 4A-I (EIF4A1), and transaldolase (TALDO1) were found in the platelet proteome and also correlated with the nasopharyngeal viral load. Dysregulation of these proteins may play a role for virus replication. ANXA5 has also been identified as an autoantigen of the antiphospholipid syndrome, which is common in COVID-19 patients. Finally, the levels of two different protein disulfide isomerases, P4HB and PDIA6, which support thrombosis, were increased in the platelets of COVID-19 patients. Conclusion: Platelets from COVID-19 patients showed significant changes in the activation phenotype, in the processing of the final coagulation factor F13A1 and the phospholipid-binding protein ANXA5 compared to healthy subjects. Additionally, these results demonstrate specific alterations in platelets during COVID-19, which are significantly linked to fatal outcome.

14.
Front Mol Biosci ; 9: 801309, 2022.
Article in English | MEDLINE | ID: covidwho-1793001

ABSTRACT

RT-qPCR-based diagnostic tests play important roles in combating virus-caused pandemics such as Covid-19. However, their dependence on sophisticated equipment and the associated costs often limits their widespread use. Loop-mediated isothermal amplification after reverse transcription (RT-LAMP) is an alternative nucleic acid detection method that overcomes these limitations. Here, we present a rapid, robust, and sensitive RT-LAMP-based SARS-CoV-2 detection assay. Our 40-min procedure bypasses the RNA isolation step, is insensitive to carryover contamination, and uses a colorimetric readout that enables robust SARS-CoV-2 detection from various sample types. Based on this assay, we have increased sensitivity and scalability by adding a nucleic acid enrichment step (Bead-LAMP), developed a version for home testing (HomeDip-LAMP), and identified open-source RT-LAMP enzymes that can be produced in any molecular biology laboratory. On a dedicated website, rtlamp.org (DOI: 10.5281/zenodo.6033689), we provide detailed protocols and videos. Our optimized, general-purpose RT-LAMP assay is an important step toward population-scale SARS-CoV-2 testing.

15.
Med Klin Intensivmed Notfmed ; 117(3): 177-186, 2022 Apr.
Article in German | MEDLINE | ID: covidwho-1763329

ABSTRACT

Treatment of coronavirus disease 2019 (COVID-19) is particularly challenging due to the rapid scientific advances and the often significant hypoxemia. Use of high-flow oxygen, noninvasive mask ventilation, and the technique of awake proning can sometimes avoid the need for intubation. Mechanical ventilation follows the principles of ventilation for acute respiratory distress syndrome (ARDS; lung protective ventilation) and is generally supplemented by consequent positioning therapy (with at least 16 h in prone position in multiple cycles). Antiviral therapy options such as remdesivir usually come too late for patients with COVID-19 in the ICU, the only exception being the administration of monoclonal antibodies for patients without seroconversion. The value of immunomodulatory therapy such as dexamethasone is undisputed. Interleukin­6 antagonists, on the other hand, are rather problematic for ICU patients, and for Janus kinase inhibitors, data and experience are still insufficient in this context.


Subject(s)
COVID-19 , Noninvasive Ventilation , Humans , Intensive Care Units , Noninvasive Ventilation/methods , Prone Position , Respiration, Artificial
16.
Wien Klin Wochenschr ; 133(23-24): 1310-1317, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1756806

ABSTRACT

BACKGROUND: Diagnosis and treatment of influenza patients are often provided across several medical specialties. We compared patient outcomes at an infectious diseases (ID), a rheumatology (Rheu) and a pulmonology (Pul) department. MATERIAL AND METHODS: In this prospective observational multicenter study we included all influenza positive adults who were hospitalized and treated at flu isolation wards in three hospitals in Vienna during the season 2018/2019. RESULTS: A total of 490 patients (49% female) with a median age of 73 years (interquartile range [IQR] 61-82) were included. No differences regarding age, sex and most underlying diseases were present at admission. Frequencies of the most common complications differed: acute kidney failure (ID 12.7%, Rheu 21.2%, Pulm 37.1%, p < 0.001), acute heart failure (ID 4.3%, Rheu 17.1%, Pulm 14.4%, p < 0.001) and respiratory insufficiency (ID 45.1%, Rheu 41.5%, Pulm 56.3%, p = 0.030). Oseltamivir prescription was lowest at the pulmonology flu ward (ID 79.6%, Rheu 90.5%, Pulm 61.7%, p < 0.001). In total 176 patients (35.9%) developed pneumonia. Antibiotic selection varied between the departments: amoxicillin/clavulanic acid (ID 28.9%, Rheu 63.8%, Pulm 5.9%, p < 0.001), cefuroxime (ID 28.9%, Rheu 1.3%, Pulm 0%, p < 0.001), 3rd generation cephalosporins (ID 4.4%, Rheu 5%, Pulm 72.5%, p < 0.001), doxycycline (ID 17.8%, Rheu 0%, Pulm 0%, p < 0.001). The median length of stay was significantly different between wards: ID 6 days (IQR 5-8), Rheu 6 days (IQR 5-7) and Pulm 7 days (IQR 5-9.5, p = 0.034). In-hospital mortality was 4.3% and did not differ between specialties. CONCLUSION: We detected differences in oseltamivir usage, length of in-hospital stay and antibiotic choices for pneumonia. Influenza-associated mortality was unaffected by specialty.


Subject(s)
Influenza, Human , Adult , Aged , Anti-Bacterial Agents/therapeutic use , Female , Hospitalization , Humans , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Male , Oseltamivir , Seasons
17.
J Gen Intern Med ; 37(6): 1494-1500, 2022 05.
Article in English | MEDLINE | ID: covidwho-1750819

ABSTRACT

BACKGROUND: Point-of-care antigen tests (AgTs) for the detection of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) enable the rapid testing of infected individuals and are easy-to-use. However, there are few studies evaluating their clinical use. OBJECTIVE: The present study aimed to evaluate and compare the clinical performance characteristics of various commercial SARS-CoV-2 AgTs. DESIGN: The sensitivity of five AgTs, comprising four rapid antigen tests (RAT; AMP Rapid Test SARS-CoV-2 Ag, NADAL COVID-19 Antigen Rapid Test, CLINITEST Rapid COVID-19 Antigen Test, and Roche SARS-CoV-2 Rapid Antigen Test) and one sandwich chemiluminescence immunoassay (CLIA; LIAISON SARS-CoV-2 Assay), were evaluated in 300 nasopharyngeal (NP) swabs. Reverse transcriptase (RT) polymerase chain reaction (PCR) was used as a reference method. PARTICIPANTS: NP swabs were collected from patients admitted to hospital due to COVID-19. KEY RESULTS: Sensitivities of the AgTs ranged from 64.9 to 91.7% for samples with RT-PCR cycle threshold (Ct) values lower than 30 and were 100% for cycle threshold (Ct) values lower than 20. The highest sensitivity was observed for CLINITEST Rapid COVID-19 Antigen Test, and Roche SARS-CoV-2 rapid antigen test. Multivariate analysis using time from symptom onset and the Ct value for AgT sensitivity showed an inverse correlation. Further, the female sex was an independent factor of lower RAT sensitivity. CONCLUSIONS: Antigen tests from NP swab samples show high sensitivity in patients with a Ct value < 20. The best clinical sensitivity can be obtained using AgTs within the first 6 days after symptom onset.


Subject(s)
COVID-19 , SARS-CoV-2 , Antigens, Viral/analysis , COVID-19/diagnosis , Female , Humans , Sensitivity and Specificity
18.
BMJ Open ; 12(3): e054516, 2022 03 07.
Article in English | MEDLINE | ID: covidwho-1731275

ABSTRACT

OBJECTIVES: To address structural determinants and healthcare workers' (HCWs) physical, mental, emotional and professional challenges of working during the COVID-19 pandemic. DESIGN: Exploratory qualitative study with semistructured interviews. Collected data were analysed using thematic analysis. SETTING: This qualitative study was undertaken with HCWs who mainly worked in intensive care units in six non-profit hospitals in Vienna, Austria. Data were collected from June 2020 to January 2021. PARTICIPANTS: A total of 30 HCWs (13 medical doctors, 11 qualified nursing staff, 2 nurse assistants, 2 physiotherapists and 2 technical/cleaning staff) who were in direct and indirect contact with patients with COVID-19 were included. RESULTS: Three overall themes resulted as relevant: challenges due to lack of preparedness, structural conditions, and physical and mental health of HCWs. Lack of preparedness included delayed infection prevention and control (IPC) guidelines, shortages of personal protective equipment combined with staff shortages (especially of nursing staff) and overworked personnel. Physical and mental strains resulted from HCWs being overworked and working permanently on alert to face medical uncertainties and the critical conditions of patients. HCWs lacked recognition on multiple levels and dealt with stigma and avoidance behaviour of colleagues. CONCLUSION: To mitigate HCWs' occupational health risks and staff turnover, we propose context-specific recommendations. The number of available essential workers in care of patients with COVID-19, especially nursing staff, should be carefully planned and increased to avert chronic work overload. Timely training and education in IPC for all HCWs is important. Providing supportive supervision is as essential as appropriate recognition by higher level management and the public.


Subject(s)
COVID-19 , COVID-19/epidemiology , Health Personnel/psychology , Humans , Pandemics/prevention & control , Personal Protective Equipment , SARS-CoV-2
19.
Front Cardiovasc Med ; 8: 802566, 2021.
Article in English | MEDLINE | ID: covidwho-1686459

ABSTRACT

Coronavirus disease 2019 (COVID-19) induces a hypercoagulatory state that frequently leads to thromboembolic complications. Whereas anticoagulation is associated with reduced mortality, the role of antiplatelet therapy in COVID-19 is less clear. We retrospectively analyzed the effect of anticoagulation and antiplatelet therapy in 578 hospitalized patients with COVID-19 and prospectively monitored 110 patients for circulating microthrombi and plasma markers of coagulation in the first week of admission. Moreover, we determined platelet shape change and also thrombi in postmortem lung biopsies in a subset of patients with COVID-19. We observed no association of antiplatelet therapy with COVID-19 survival. Adverse outcome in COVID-19 was associated with increased activation of the coagulation cascade, whereas circulating microthrombi did not increase in aggravated disease. This was in line with analysis of postmortem lung biopsies of patients with COVID-19, which revealed generally fibrin(ogen)-rich and platelet-low thrombi. Platelet spreading was normal in severe COVID-19 cases; however, plasma from patients with COVID-19 mediated an outcome-dependent inhibitory effect on naïve platelets. Antiplatelet medication disproportionally exacerbated this platelet impairment in plasma of patients with fatal outcome. Taken together, this study shows that unfavorable outcome in COVID-19 is associated with a profound dysregulation of the coagulation system, whereas the contribution of platelets to thrombotic complications is less clear. Adverse outcome may be associated with impaired platelet function or platelet exhaustion. In line, antiplatelet therapy was not associated with beneficial outcome.

20.
Front Cell Infect Microbiol ; 11: 795026, 2021.
Article in English | MEDLINE | ID: covidwho-1686455

ABSTRACT

Objective: To develop and validate a prognostic model for in-hospital mortality after four days based on age, fever at admission and five haematological parameters routinely measured in hospitalized Covid-19 patients during the first four days after admission. Methods: Haematological parameters measured during the first 4 days after admission were subjected to a linear mixed model to obtain patient-specific intercepts and slopes for each parameter. A prediction model was built using logistic regression with variable selection and shrinkage factor estimation supported by bootstrapping. Model development was based on 481 survivors and 97 non-survivors, hospitalized before the occurrence of mutations. Internal validation was done by 10-fold cross-validation. The model was temporally-externally validated in 299 survivors and 42 non-survivors hospitalized when the Alpha variant (B.1.1.7) was prevalent. Results: The final model included age, fever on admission as well as the slope or intercept of lactate dehydrogenase, platelet count, C-reactive protein, and creatinine. Tenfold cross validation resulted in a mean area under the receiver operating characteristic curve (AUROC) of 0.92, a mean calibration slope of 1.0023 and a Brier score of 0.076. At temporal-external validation, application of the previously developed model showed an AUROC of 0.88, a calibration slope of 0.95 and a Brier score of 0.073. Regarding the relative importance of the variables, the (apparent) variation in mortality explained by the six variables deduced from the haematological parameters measured during the first four days is higher (explained variation 0.295) than that of age (0.210). Conclusions: The presented model requires only variables routinely acquired in hospitals, which allows immediate and wide-spread use as a decision support for earlier discharge of low-risk patients to reduce the burden on the health care system. Clinical Trial Registration: Austrian Coronavirus Adaptive Clinical Trial (ACOVACT); ClinicalTrials.gov, identifier NCT04351724.


Subject(s)
COVID-19 , SARS-CoV-2 , Hospital Mortality , Hospitalization , Humans , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL